人教版数学八年级下教案8篇
创新的教案能够激发学生的学习兴趣和创造力,教案的编写需要注重培养学生的自主学习和合作学习能力,下面是合同范文网小编为您分享的人教版数学八年级下教案8篇,感谢您的参阅。
人教版数学八年级下教案篇1
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材p72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材p140探究问题的表格中的第三组数据,它的范围是41≤x≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值x频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材p140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材p140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、p141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读p140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0
0
20
30
40
50
(1)、第二组数据的组中值是多少?
(2)、求该班学生平均每天做数学作业所用时间
2、某班40名学生身高情况如下图,
请计算该班学生平均身高
答案1.(1).15. (2)28. 2. 165
六、课后练习:
1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表
部门a b c d e f g
人数1 1 2 4 2 2 5
每人创得利润20 5 2.5 2 1.5 1.5 1.2
该公司每人所创年利润的平均数是多少万元?
2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?
年龄频数
28≤x
30≤x
32≤x
34≤x
36≤x
38≤x
40≤x
3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。
答案:1.约2.95万元2.约29岁3.60.54分贝
人教版数学八年级下教案篇2
教材分析:
平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。
几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。
教学目标:
1、通过剪、拼、摆等活动,让学生主动探究平行四边形的面积计算公式。
2、掌握平行四边形面积计算公式并能解决实际问题。
3、培养学生初步的空间观念。
4、培养学生积极参与、团结合作、主动探索的精神。
教学重点:
平行四边形面积的计算。
教学难点:
平行四边形面积公式的推导过程。
教学准备:
学具。
教学过程:
一、质疑引新
1、显示长方形图
长方形的面积怎样求?
2、电脑展示长方形变形为平行四边形。
原来的长方形变成了什么图形?它的面积怎样求呢?
二、引导探究
(一)、铺垫导引
出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。
小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?
实验、操作(小组合作):把后两幅图转化成长方形
电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。
集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)
讨论:
剪拼前后,图形的形状变了没有?面积有没有变?
做了这个实验你想到了什么?
(二)、实验探索
刚才用剪、移、拼的方法解决一个求图形面积的问题,用这样的方法,你能不能探索出平行四边形面积的计算方法呢?
学生实验操作
1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。
2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。
3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。
结合学生发言提问:
你在平行四边形上沿哪条线段剪开的?
这条线段实际上是平行四边形的什么?
在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。
(三)总结归纳
问:
1、平行四边形剪拼成长方形后,两种图形的面积有什么关系?
2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)
得出:平行四边形面积=底×高
追问:要求平行四边形的面积,必须知道哪两个条件?
用字母表示公式
学生自学p44~p45有关内容
集体交流:s=a×h
s=a·h
s=ah
教师强调乘号的简写与略写的方法
三、深化认识
1、验证公式
学生利用公式计算p43表格平行四边形的面积,看结果是否和实验结果一样。
2、应用公式
a) 例题
学生列式解答,并说出列式的根据。
b) 做练一练
四、巩固练习
1、求下列图形的面积是多少?
底5厘米,高3。5厘米 底6厘米,高2厘米
2、计算下面图形的面积哪个算式正确?(单位:米)
3×8 3×6 4×8 6×8 3×4 4×6
3、求平行四边形的高是多少?
面积:56平方厘米
底:8厘米
4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
以小组为单位探讨多种想法
五、总结全课(电脑显示、学生口答)
把一个平行四边形沿着高剪成两部分,通过( )法,可以把这两部分拼成一个( )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于( ), 用字母表示平行四边形的面积公式( )。
人教版数学八年级下教案篇3
教学目标:
1.知道负整数指数幂=(a≠0,n是正整数).
2.掌握整数指数幂的运算性质.
3.会用科学计数法表示小于1的数.
教学重点:
掌握整数指数幂的运算性质.
难点:
会用科学计数法表示小于1的数.
情感态度与价值观:
通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践.能利用事物之间的类比性解决问题.
教学过程:
一、课堂引入
1.回忆正整数指数幂的运算性质: (1)同底数的幂的乘法:am?an = am+n (m,n是正整数); (2)幂的乘方:(am)n = amn (m,n是正整数); (3)积的乘方:(ab)n = anbn (n是正整数); (4)同底数的幂的除法:am÷an = am?n ( a≠0,m,n是正整数,m>n); (5)商的乘方:()n = (n是正整数);
2.回忆0指数幂的规定,即当a≠0时,a0 = 1.
3.你还记得1纳米=10?9米,即1纳米=米吗?
4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).
二、总结: 一般地,数学中规定: 当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数) 教师启发学生由特殊情形入手,来看这条性质是否成立. 事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n (m,n是整数)这条性质也是成立的.
三、科学记数法: 我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012 = 1.2×10?5. 即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数. 启发学生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此发现其中的规律,从而有0.0000000012 = 1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.
人教版数学八年级下教案篇4
一 教学目标:
1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题.
3.培养用类比、逆向联想及运动的思维方法来研究问题.
二 重点、难点
1.重点:平行四边形的判定方法及应用.
2.难点:平行四边形的判定定理与性质定理的灵活应用.
3.难点的突破方法:
平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.
(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.
(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:
①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;
②本节课只介绍前两个判定方法.
(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习,平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.
然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.
在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.
(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.
(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.
(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.
三 例题的意图分析
本节课安排了3个例题,例1是教材p96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的.思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.
四 课堂引入
1.欣赏图片、提出问题.
展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?
2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2 对角线互相平分的四边形是平行四边形
人教版数学八年级下教案篇5
教学目标
知识与能力:
1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.
2.理解平行四边形的另一种判定方法,并学会简单运用.
过程与方法:
1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识.
2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.
情感、态度与价值观:
通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.
教学方法
启发诱导式 教具 三角尺
教学重点
平行四边形判定方法的探究、运用.
教学难点
对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用
教学过程:
第一环节 复习引入:
问题1:
1.平行四边形的定义是什么?它有什么作用?
2.判定四边形是平行四边形的方法有哪些?
(1)两组对边分别平行的四边形是平行四边形.
(2)一组对边平行且相等的四边形是平行四边形.
(3)两条对角线互相平分的四边形是平行四边形.
第二环节 探索活动
活动:
工具:两对长度分别相等的木条。
动手:能否在平面内用这四根笔摆成一个平行四边形?
思考1.1:你能说明你所摆出的四边形是平行四边形吗?
已知:四边形abcd中,ad=bc,ab=cd. 试说明四边形abcd是平行四边形.
思考1.2:以上活动事实,能用文字语言表达吗?
学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:
(1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.
(2)通过观察、实验、猜想到:
两组对边分别相等的四边形是平行四边形.
在此活动中,教师应重点关注:
(1)学生在拼四边形时,能否将相等两木条作为四边形的对边;
(2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;
(3)学生能否通过独立思考、小组合作得出正确的证明思路.
第三环节 巩固练习
例1 如图:在四边形abcd中,∠1=∠2,∠3=∠4.四边形abcd是平行四边形吗?为什么?
八年级数学上册教案例2 如图所示,ac=bd=16,ab=cd=ef=15,ce=df=9,图中有哪些互相平行的线段?
随堂练习
1.判断下列说法是否正确
(1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )
(2)两组对角都相等的四边形是平行四边形 ( )
(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )
(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )
2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?为什么?
3.如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.
4.如图:ad是Δabc的边bc边上的中线.
(1)画图:延长ad到点e,使de=ad,连接be,ce;
(2)判断四边形abec的形状,并说明理由.
第四环节 小结:
师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
(3)平行四边形判定的应用 集备意见 个案补充
人教版数学八年级下教案篇6
教学目的:
1、在具体的操作活动中,让学生认、读、写11-20各数,掌握20以内数的顺序,初步建立数位的概念。
2、结合学生的实际情况,让学生填写算式。
3、在教学中渗透数的顺序,并进行社会秩序教育。
4、学会与人合作,体会计算的多样化,发展学生思维。
教学重点:
掌握20以内数的顺序。
教学难点:
初步建立数的概念
教学准备:
每组一个数位计数器及40-50根小棒等。
教学方法:
抓问题,用多种游戏,把抽象的数位具体化。
教学步骤:
一、创设情景,寻找关键问题
1、数学课研究数学问题,一些小棒会有什么数学问题。
(每张桌子发40-50根小棒,玩小棒时间为3-5分钟)
2、你发现了什么数学问题。
(目的:练习20以内数的顺序,也可以在玩小棒中发现十根捆一捆)
3、游戏,看谁的手小巧。
老师报数,学生用棒子表示,讨论:快的同学的诀窍。
出示:十根可以捆一捆。
再进行游戏,让学生习惯中把1捆当作10根用。
4、完成:
()个一()个十
试一试,在计数器拔出10
个位只有几颗珠子,怎么办?(10个一是1个10)
在个位拔上一颗珠子,表示1个十,也表示10个一。
二、自主合作,解决数位顺序。
在解决了10是1个十也是10个一后,还能过度试一试在计数器上表示。接下来就是让学生通过自主合作,数位,组成和算式结合,理解11-20各数。
1、11-20各数在计数器上怎么表示呢?
问题提出后,可以组织学生讨论交流,并加以解决,并结合p68的图示表达自己的想法,学生之间互相交流,实现生生互动。
(这儿注意11-20的表达多样,只要求至少一样,方法选择,方法应用应由学生通过自主交流来确定。)
2、
1个十,1个一是1110+1=11
10和11,十位上是1,没有变,个位由0变成1,就是11。
3、15、19、20的数位可重点检查。
(20的数位可由10-20,也可19-20来描述。)
4、小结,从右边起,第一位是个位,第二位是十位,数位不一样,数也不一样,十位上1表示1个十,个位上1表示1个一。
5、练习:(口算)
10+910+810+710+610+5
10+410+39+108+107+10
6+105+104+103+10
三、实践应用,实现知识延伸
1、寻找粗心丢失的数。
游戏报数。(报数时丢一些中间数)
2、开火车顺数
游戏:数数(顺数和倒数)
3、拔珠游戏(师生――生生)
报数13,拔13并写出13,同时说13的含义,还可画珠。
4、p691-6自己完成。
四、课外实践,拓展知识应用。
1、完成10-20各数数位图及小棒图。
2、和父母互说10-20各数组成。
人教版数学八年级下教案篇7
一、学习目标:
让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重点:能观察出多项式的公因式,并根据分配律把公因式提出来
难点:让学生识别多项式的公因式.
三、合作学习:
公因式与提公因式法分解因式的概念.
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的
课堂练习
1.写出下列多项式各项的公因式.
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的一般步骤.:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的
注意:(a-b)2=(b-a)2
六、作业
1、教科书习题
2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
人教版数学八年级下教案篇8
教学目标
1.知识与技能
领会运用完全平方公式进行因式分解的方法,发展推理能力.
2.过程与方法
经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.
3.情感、态度与价值观
培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.
重、难点与关键
1.重点:理解完全平方公式因式分解,并学会应用.
2.难点:灵活地应用公式法进行因式分解.
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的
教学方法
采用“自主探究”教学方法,在教师适当指导下完成本节课内容.
教学过程
一、回顾交流,导入新知
?问题牵引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
?知识迁移】
2.计算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
?教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
?学生活动】从逆向思维的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
?归纳公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例学习,应用所学
?例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
?例2】如果x2+axy+16y2是完全平方,求a的值.
?思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.
三、随堂练习,巩固深化
课本p170练习第1、2题.
?探研时空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、课堂总结,发展潜能
由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在运用公式因式分解时,要注意:
(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.
五、布置作业,专题突破
